Exercices sur les produits scalaires

Sommaire

Produit scalaire avec des matrices
Produit scalaire avec des polynômes
Procédé d’orthonormalisation de Gram-Schmidt

Produit scalaire avec des matrices

Soit un entier strictement positif.
Pour tout (A ; B) appartenant à Mn(R)2, on définit l’application :

Montrer que l’on définit ainsi un produit scalaire sur Mn(R).

Produit scalaire avec des polynômes

Haut de page

Pour tout (P ; Q) appartenant à R[X]2, on définit l’application :

Montrer que l’on définit ainsi un produit scalaire sur R[X].

Procédé d’orthonormalisation de Gram-Schmidt

Haut de page

L’exercice décrit une méthode très classique : le procédé d’orthonormalisation de Gram-Schmidt.
Il s’agit de transformer une base quelconque en une base orthonormée.
On considère donc les vecteurs suivants :

On suppose que (e1, e2, e3) est une base.
L’exercice consiste à transformer cette base en une base orthonormée notée (u1, u2, u3).
Remarque : on considérera que l’espace est muni du produit scalaire canonique.

Retour au sommaire des exercicesRemonter en haut de la page